If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2=555
We move all terms to the left:
16t^2-(555)=0
a = 16; b = 0; c = -555;
Δ = b2-4ac
Δ = 02-4·16·(-555)
Δ = 35520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{35520}=\sqrt{64*555}=\sqrt{64}*\sqrt{555}=8\sqrt{555}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{555}}{2*16}=\frac{0-8\sqrt{555}}{32} =-\frac{8\sqrt{555}}{32} =-\frac{\sqrt{555}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{555}}{2*16}=\frac{0+8\sqrt{555}}{32} =\frac{8\sqrt{555}}{32} =\frac{\sqrt{555}}{4} $
| 6a+12=42+5a | | -4(5a+2)=5(4-4a)-28 | | 7x-16=5x+32 | | 15x=22 | | -2-2.3b=4 | | 10.50/3=p/10 | | 3/10.50=10/p | | 14a=476 | | -18x-13=-49 | | 9y+3=(y-3) | | -1/2(x-8)=10 | | 35y−15 =5 | | 6(y+2)-4(y+1)=42 | | ((3x+17)-(2x-20))/2=x | | -1/2(c-8)=10 | | 10x+1=12x-26 | | −x2+14x=49 | | z+1^6=z | | 6.3n=69.3 | | (2x+12)=(7x-10)+(3x+16) | | z+1/6=z | | (2x+12)=(7x-10)+(3x+16 | | 5u-6=-41 | | -4(4a-4)=2(3-8a)+10 | | 15x-8=7x+.98 | | $.85+y=$50. | | 6p=660 | | 54h=9 | | 5v+7=28 | | 44=8g | | 13865=x²+5x+65 | | 4(3x+7)+x=-24 |